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 suppose that you take a measurement x1 of some real-valued 
quantity (distance, velocity, etc.) 

 your friend takes a second measurement x2 of the same 
quantity 

 after comparing the measurements you find that 
 
 

 what is the best estimate of the true value μ? 
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 suppose that an appropriate noise model for the 
measurements is 
 
 
 
 
where       is zero-mean Gaussian noise with variance 

 because two different people are performing the 
measurements it might be reasonable to assume that x1 and x2 
are independent  
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x = 5; 

x1 = x + randn(1, 1000);   % noise variance = 1 

x2 = x + randn(1, 1000);   % noise variance = 1 

mu2 = (x1 + x2) / 2; 

 

bins = 1:0.2:9; 

hist(x1, bins); 

hist(x2, bins); 

hist(mu2, bins); 
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var(x1) = 0.9979 var(x2) = 0.9972 
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var(x1) = 0.4942 
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 suppose the precision of your measurements is much worse 
than that of your friend 

 consider the measurement noise model 
 
 
 
 
where       is zero-mean Gaussian noise with variance 
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x = 7; 

x1 = x + 3 * randn(1, 1000);   % noise variance = 3*3 = 9 

x2 = x + randn(1, 1000);       % noise variance = 1 

mu2 = (x1 + x2) / 2; 

 

bins = -2:0.2:18; 

hist(x1, bins); 

hist(x2, bins); 

hist(mu2, bins); 
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var(x1) = 8.9166 var(x2) = 0.9530 
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var(mu2) = 2.4317 
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 is the average the optimal estimate of the combined 

measurements? 
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 instead of ordinary averaging, consider a weighted average 
 
 
 
where 

 the variance of a random variable is defined as  
 
 
 
where E[X] is the expected value of X  

2211 xx ωωµ +=
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 informally, the expected value of a random variable X is the 
long-run average observed value of X  

 formally defined as 
 
 

 properties 
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 because x1 and x2 are independent 
 
        and 
 
are also independent; thus 
 
 

 finally    
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 because x1 and x2 are independent 
 
        and 
 
are also independent; thus 
 
 

 finally    
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 one way to choose the weighting values is to choose the 
weights such that the variance is minimized 
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 thus, the minimum variance estimate is 
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x = 7; 

x1 = x + 3 * randn(1, 1000);   % noise variance = 3*3 = 9 

x2 = x + randn(1, 1000);       % noise variance = 1 

w = 9 / (9 + 1); 

mu2 = (1 – w) * x1 + w * x2; 

 

bins = -2:0.2:18; 

hist(x1, bins); 

hist(x2, bins); 

hist(mu2, bins); 
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var(mu2) = 2.4317 var(mu2) = 0.8925 

mu2=0.5*x1 + 0.5*x2 mu2=0.1*x1 + 0.9*x2 
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